3.176 \(\int \frac{(A+B \sin (e+f x)) \sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx\)

Optimal. Leaf size=96 \[ \frac{c (A-B) \cos (e+f x) \log (\sin (e+f x)+1)}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{f \sqrt{a \sin (e+f x)+a}} \]

[Out]

((A - B)*c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (B*Cos[
e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.322328, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {2971, 2738, 2737, 2667, 31} \[ \frac{c (A-B) \cos (e+f x) \log (\sin (e+f x)+1)}{f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{f \sqrt{a \sin (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

((A - B)*c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (B*Cos[
e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]])

Rule 2971

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[B/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x
] - Dist[(B*c - A*d)/d, Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{(A+B \sin (e+f x)) \sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx &=\frac{B \int \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)} \, dx}{a}-(-A+B) \int \frac{\sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx\\ &=-\frac{B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{f \sqrt{a+a \sin (e+f x)}}-\frac{(a (-A+B) c \cos (e+f x)) \int \frac{\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=-\frac{B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{f \sqrt{a+a \sin (e+f x)}}-\frac{((-A+B) c \cos (e+f x)) \operatorname{Subst}\left (\int \frac{1}{a+x} \, dx,x,a \sin (e+f x)\right )}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{(A-B) c \cos (e+f x) \log (1+\sin (e+f x))}{f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}-\frac{B \cos (e+f x) \sqrt{c-c \sin (e+f x)}}{f \sqrt{a+a \sin (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 1.13768, size = 119, normalized size = 1.24 \[ \frac{\sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right ) \left (B \sin (e+f x)+(A-B) \left (2 \log \left (e^{i (e+f x)}+i\right )-i f x\right )\right )}{f \sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*((A - B)*((-I)*f*x + 2*Log[I + E^(I*(e + f*x))]) + B*Sin[e + f*x])*Sqrt
[c - c*Sin[e + f*x]])/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])])

________________________________________________________________________________________

Maple [B]  time = 0.34, size = 399, normalized size = 4.2 \begin{align*} -{\frac{1}{f \left ( -1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) } \left ( A\sin \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,A\sin \left ( fx+e \right ) \ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -A\cos \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +2\,A\cos \left ( fx+e \right ) \ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +B\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) -B\sin \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +2\,B\sin \left ( fx+e \right ) \ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +B \left ( \cos \left ( fx+e \right ) \right ) ^{2}+B\cos \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,B\cos \left ( fx+e \right ) \ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +A\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -2\,A\ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -B\sin \left ( fx+e \right ) -B\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +2\,B\ln \left ({\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -B \right ) \sqrt{-c \left ( -1+\sin \left ( fx+e \right ) \right ) }{\frac{1}{\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x)

[Out]

-1/f*(A*sin(f*x+e)*ln(2/(cos(f*x+e)+1))-2*A*sin(f*x+e)*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-A*cos(f*x+e)*l
n(2/(cos(f*x+e)+1))+2*A*cos(f*x+e)*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*sin(f*x+e)*cos(f*x+e)-B*sin(f*x+
e)*ln(2/(cos(f*x+e)+1))+2*B*sin(f*x+e)*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+B*cos(f*x+e)^2+B*cos(f*x+e)*ln
(2/(cos(f*x+e)+1))-2*B*cos(f*x+e)*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+A*ln(2/(cos(f*x+e)+1))-2*A*ln((1-co
s(f*x+e)+sin(f*x+e))/sin(f*x+e))-B*sin(f*x+e)-B*ln(2/(cos(f*x+e)+1))+2*B*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+
e))-B)*(-c*(-1+sin(f*x+e)))^(1/2)/(-1+cos(f*x+e)+sin(f*x+e))/(a*(1+sin(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.56585, size = 238, normalized size = 2.48 \begin{align*} \frac{B{\left (\frac{2 \, \sqrt{c} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{\sqrt{a}} - \frac{\sqrt{c} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt{a}} - \frac{2 \, \sqrt{a} \sqrt{c} \sin \left (f x + e\right )}{{\left (a + \frac{a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}\right )}{\left (\cos \left (f x + e\right ) + 1\right )}}\right )} - A{\left (\frac{2 \, \sqrt{c} \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{\sqrt{a}} - \frac{\sqrt{c} \log \left (\frac{\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt{a}}\right )}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

(B*(2*sqrt(c)*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/sqrt(a) - sqrt(c)*log(sin(f*x + e)^2/(cos(f*x + e) + 1)
^2 + 1)/sqrt(a) - 2*sqrt(a)*sqrt(c)*sin(f*x + e)/((a + a*sin(f*x + e)^2/(cos(f*x + e) + 1)^2)*(cos(f*x + e) +
1))) - A*(2*sqrt(c)*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/sqrt(a) - sqrt(c)*log(sin(f*x + e)^2/(cos(f*x + e
) + 1)^2 + 1)/sqrt(a)))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \sin \left (f x + e\right ) + A\right )} \sqrt{-c \sin \left (f x + e\right ) + c}}{\sqrt{a \sin \left (f x + e\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((B*sin(f*x + e) + A)*sqrt(-c*sin(f*x + e) + c)/sqrt(a*sin(f*x + e) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (\sin{\left (e + f x \right )} - 1\right )} \left (A + B \sin{\left (e + f x \right )}\right )}{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))*(A + B*sin(e + f*x))/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sin \left (f x + e\right ) + A\right )} \sqrt{-c \sin \left (f x + e\right ) + c}}{\sqrt{a \sin \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(-c*sin(f*x + e) + c)/sqrt(a*sin(f*x + e) + a), x)